|  | Number Concepts |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Counting | Comparison \& Ordering | Recognising Number \& Subitising | Change | Composition |
| Description | - Stable order principle <br> - 1:1 correspondence <br> - Cardinal principle <br> - Order irrelevance principle <br> - Abstract principle | Comparing the numerosity of sets i.e.bigger, smaller, same/equal, more, less, fewer etc. | Perceptual subitising | - Addition <br> - Subtraction <br> - Multiplying <br> - Dividing | - Partitioning numbers <br> - Knowing how numbers are made of other numbers |
| Typical Age (years) |  |  |  |  |  |
| 2 | 1-2 Names some number words in no apparent order or meaning. | 2 Puts objects into 1:1 correspondence but not necessarily understanding that there are the same number of items e.g. 3 eggs in 3 eggs cups, not stating that there are 3 of each. | 2 Can name groups of 1 to 2, sometimes 3, e.g. when shown a pair of shoes the child says "two shoes". |  |  |
|  | 1-2 Sings numbers often in some order through song and without meaning of quantity or counting. | 2 Can compare two set of objects which are considerably different in quantity and know that one set has more than the other. |  |  |  |
|  | 2 Verbally recites number names with the intention of counting but does not necessarily recite the correct order. | 2-3 Identifies the concept of first and second. E.g. when racing toy cars, identifies who is the winner (came first). |  | 2 Gives out objects to other children although not equally e.g. has a box of cars, gives 1 to a friend and keeps the rest. |  |


| 3 | 3 Verbally counts to ten with some correspondence with objects. May point to objects to count a few items but often loses track | 3 Can compare sets of 1-4 items by subitising (recognising by sight)but the items in each set are the same or similar in size and type e.g. compare 3 bears and 2 bears. |  | 3 Can add or subtract very small collections non-verbally e.g. when shown 2 objects then another under a napkin, the child identifies or makes a set of 3 to 'match'. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 Keeps 1:1 correspondence between counting words and objects at least for small groups of objects laid in a line. When asked how many, the child often recounts the objects starting with one each time. | 3 Can match small, same size sets of dissimilar items such as comparing 4 bears and 4 chairs and show that they are the same amount. | 3 Can non-verbally make a small collection (no more than 5), with the same number as another collection, e.g. when shown a collection of 3 they make another collection of 3 . | 3 Can share up to 4 objects between 2 people by dealing out 1 for 1 e.g. to share 4 blocks, the child gives each child a block, checks each has 1 then repeats. |  |
| 4 | 4 Begins to count meaningfully. Accurately counts a given set of objects to 5 and answers the how many question with the last number counted without having to recount the objects. | 4 Compares same and different sized sets of 1-6 objects by matching and can tell if the result is the same. If there are no unmatched items or more if there are extra items. For example, a child gives one bone to every toy dog and determines if there are the same number of dogs and bones or if there are extra dogs and bones. | 4 Instantly recognises collections up to 4 when briefly shown and verbally names the number of items, e.g. when shown 4 objects briefly says "4". | 4 Can solve simple number problems by adding two numbers together (with a total of no more than 5) e.g. "you've got two balls and I give you one more. How many do you have now?" The child then counts " 1 , 2, 3, 3!" | 4 Non-verbally recognises parts and wholes e.g. at snack time knows that all of the fruit is made up of some apples and some pears. |
|  | 4 When asked to show a specific number of objects, a child can accurately produce or make a set of objects up to 5 (counting out from a larger set). | 4 Begins to compare sets by counting. Can make accurate comparisons but only when the objects are similar in size and the sets are small in quantity (about 1-5 objects). |  | 4 Can share up to 6 objects between 2 or more people. |  |


| 5 | $4-5$ Counts structured <br> arrangements of objects to 10. <br> May be able to draw <br> representations of objects up to <br> 10. Can also find the number <br> just after or just before a <br> given number but only by <br> starting from 1 every time. | 5 Instantly recognises <br> collections up to 5 when briefly <br> shown and verbally names the <br> number of items, e.g. when <br> shown 5 objects briefly says <br> "5". |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | $5-6$ Accurately counts and <br> produces sets to 10 and <br> beyond to 20, keeping track of <br> objects that have and have not <br> been counted. Draws <br> representations to 10, then to <br> 20 and 30, and can find the <br> next number to 20 and 30. <br> Recognises errors in others <br> counting and can eliminate <br> most errors in own counting. | 5 Compares sets of up to 10 <br> items by counting. The <br> objects do not need to be <br> similar in size. | Next the child will be able to <br> compare larger sets of items, <br> even when the collections of <br> objects are smaller. | 5 Verbally labels all <br> arrangements to 5 shown only <br> briefly, e.g. "I saw 2 and 2 so I <br> saw 4". |


|  |  |  |  | then counts the 2 dogs which have no ball. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 5 Beginning to compare by ordering lengths marked into units (1-6 then beyond). For example, given towers of cubes the child can put them in order 1-6. Later the child begins to order collections. For example, given cards with 1 to 6 dots on them, puts them in order to 6 . |  | 5 Can add on objects to make one number into another number without counting from 1 e.g. "the puppet has 4 balls but should have 6. Make it 6." Puts 4 fingers up and immediately counts from 4 while putting up 2 fingers on the other hand saying " 5,6 ". |  |
|  |  | 5 Uses internal images and knowledge of number relationships to determine relative size and position e.g. determine whether 4 or 9 is closer to 6. |  | 5 Can solve problems by grouping e.g. a child shares 20 objects by dealing out 2 at a time between 5 children. Then gives 1 to each person until all of the items are gone. |  |
| 6 | 6 Begins to count on from numbers other than 1 either in verbal counts or with objects. Can determine the number just before or after another number quickly without having to start back at 1 . | 6 Can compare sets by counting and is not influenced by the size of the objects, e.g. accurately counts 2 sets of 9 even if one set is larger in size. | 6 Can verbally label structured arrangements up to 20, shown only briefly, using groups, e.g "I saw three 5 s, so $5,10,15$ " | 6 Can count on and use finger patterns to add groups together, e.g. how much is 4 and 3 more, the child answers " $4,5,6,7$, it's 7 ." They can also compare problems by counting on, e.g. You have 6 apples, how many more do you need to have 8 . The child says " 6 (holds up one finger), 7 (holds up a second finger), 8 , it's 8 ." | 6 Knows number combinations of totals to 7 and can double numbers to 10. |


|  | 6 Can count in 10 s to 100. | 6 Compares sets by counting (up to 10). For example, Accurately counts two collections of 9 each, and says they have the same number, even if one collection has larger blocks. |  | 6 Can solve all problem types using flexible strategies and some derived facts (for example, " $5+5$ is 10 , so $5+6$ is $11^{\prime \prime}$ ) They can sometimes solve problems where the start is unknown $\qquad$ $+6=11$ ), but only by trial and error. When asked, "You had some conkers. Then you get 6 more. Now you have 11 conkers. How many did you start with?" they lay out 6 , then 3 more, counts and gets 9 . Puts 1 more with the 3 , says 10 , then puts 1 more. Counts up from 6 to 11, then recounts the group added, and says, "5!" | 6 Knows number combinations of totals of 10 . Can quickly name parts of any whole, or the whole when given the parts and can double numbers to 20 . |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 6 Can count in 1 s through 100 including knowing the decade transitions from 39 to 40, 49 to 50 etc starting at any number. | 6 Uses mental rather than physical images and knowledge of number relationships to determine relative size and position. E.g, answers which number is closer to 6,4 , or 9 without counting physical objects. |  | 6 Can recognise that a number is part of a whole and can solve problems when the start is unknown ( $\ldots+4=9$ ) with counting strategies. For example, when asked, "You have some balls, then you get 4 more balls, now you have 9 . How many did you have to start with?" the child counts, putting up fingers, "5, 6, 7, 8, 9." Looks at fingers, and says, "5!" |  |
|  | 6 Keeps track of counting acts by using numerical patterns or movements such as tapping as they count. | 6 Orders lengths marked into units. For example, given towers of cubes the child can put them in order (more than 6 cubes). |  |  |  |
|  | 6 Can count in 5 s and $\mathbf{2 s}$ with understanding. |  |  |  |  |


|  | 6 Can count mental images of <br> hidden objects. |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | 6 Can keep track of counting <br> acts numerically by the ability <br> to count on (1-4 counts) from a <br> given number. |  |  |  |
|  | 6 Can count unusual units <br> such as wholes (when shown <br> combinations of wholes and <br> parts for example, when shown <br> 3 whole plastic eggs and 4 <br> halves, a child at this level will <br> say there are 5 whole eggs). |  |  |  |
| 6 Counts accurately to 200 <br> and beyond, recognising the <br> patterns of 1s, 10s and 100s. |  |  |  |  |
|  | 6 Demonstrates the ability to <br> conserve number, he or she <br> understands that a number is <br> unchanged even if a group of <br> objects is rearranged e.g. if <br> there a a row of 10 buttons, the <br> child understands there are still <br> 10 even if rearranged in a long <br> row or a circle. |  |  |  |

